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Abstract We give new proofs of existence of the limit of the discounted values for
two person zero-sum games in the three following frameworks: absorbing, recursive,
incomplete information. The idea of these new proofs is to use some comparison
criteria.
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1 Introduction

The purpose of this article is to present a unified approach to the existence of the limit
value for two person zero-sum discounted games. The main tools used in the proofs
are

– the fact that the discounted value satisfies the Shapley equation [1],
– properties of accumulation points of the discounted values, and of the correspond-

ing optimal strategies,
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– comparison of two accumulation points leading to uniqueness and characterization.

We apply this program for three well known classes of games, each time covering the
case where action spaces are compact.

For absorbing games, the results are initially due to Kohlberg [2] for finitely many
actions, later extended in Rosenberg and Sorin [3] for the compact case. An explicit
formula for the limit was recently obtained in Laraki [4], and we obtain a related one.
The case of recursive games was first handled in Everett [5], with a different notion
of limit value involving asymptotic payoff on plays. It was later shown by Sorin [6]
that these results implied also the existence of the limit value for two person zero-sum
discounted games. The last class corresponds to games with incomplete information,
where the results were initially obtained in Aumann and Maschler [7] and Mertens
and Zamir [8] (including also the asymptotic study of the finitely repeated games). In
that case, we follow a quite similar approach to Laraki [9].

2 Model, Notations and Basic Lemmas

Let G be a two person zero-sum stochastic game defined by a finite state space Ω ,
compact metric action spaces I and J for player 1 and 2 (with mixed extensions X =
�(I) and Y = �(J ), respectively, where for a compact metric space C, �(C) denotes
the set of Borel probabilities on C, endowed with the weak-� topology), a separately
continuous real bounded payoff g on I ×J ×Ω and a separately continuous transition
ρ from I × J × Ω to �(Ω).

The game is played in discrete time. At stage t , given the state ωt , the payers
choose moves it ∈ I, jt ∈ J , the stage payoff is gt = g(it , jt ,ωt ) and the new state
ωt+1 is selected according to ρ(it , jt ,ωt ), and is announced to the players. Given
λ ∈ ]0,1], the total evaluation in the λ-discounted game is

∑∞
t=1 λ(1 − λ)t−1gt .

The Shapley operator Φ(λ,f ) [1] is then defined, for λ ∈ [0,1] and f in some
closed subset F0 of the set of bounded functions from Ω to R, by the formula

Φ(λ,f )(ω) = min
Y

max
X

{
λg(x, y,ω) + (1 − λ)Eρ(x,y,ω)f (·)}

= max
X

min
Y

{
λg(x, y,ω) + (1 − λ)Eρ(x,y,ω)f (·)},

where g and ρ are bilinearly extended to X × Y . For λ > 0, the only fixed point of
Φ(λ, ·) is the value vλ of the discounted game [1].

The sets of optimal actions of each player in the above formula are denoted
by Xλ(f )(ω) and Yλ(f )(ω). Let X = XΩ and, similarly, Y = YΩ . For simplicity,
for any (x,y) ∈ X × Y we denote ρ(x,y,ω) := ρ(x(ω),y(ω),ω). Moreover, define
Xλ(f ) := ∏

ω∈Ω Xλ(f )(ω) and Yλ(f ) := ∏
ω∈Ω Yλ(f )(ω).

S denotes the set of fixed points of the projective operator Φ(0, .), and S0 is the
set of accumulation points of the family {vλ} as λ goes to 0.

The following lemmas are easy to establish in this finite state framework.

Lemma 2.1 S0 ⊂ S .
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Lemma 2.2 Assume that vλn converges to v ∈ S0 and that some sequence of optimal
actions xλn ∈ Xλn(vλn) converges to x. Then x ∈ X0(v).

Lemma 2.3 Let v and v′ be in S and Ω1 = Argmax(v − v′). For any x ∈ X0(v),
y ∈ Y0(v

′), and ω ∈ Ω1, the probability ρ(x,y,ω) is supported by Ω1.

Proof Since v ∈ S and x ∈ X0(v):

v(ω) = Φ(0, v)(ω) ≤ Eρ(x,y,ω)v(·).
Using a dual inequality as well:

v(ω) − v′(ω) ≤ Eρ(x,y,ω)

(
v − v′)(·),

and the result follows. �

3 Absorbing Games

We consider here a special class of stochastic games, as defined in Sect. 2. We are
given two separately continuous (payoff) functions g, g∗ from I × J to [−1,1], and
a separately continuous (probability of absorption) function p from I × J to [0,1].

The repeated game with absorbing states is played in discrete time as follows. At
stage t = 1,2, . . . (if absorption has not yet occurred) player 1 chooses it ∈ I and,
simultaneously, player 2 chooses jt ∈ J :

(i) the payoff at stage t is g(it , jt );
(ii) with probability p∗(it , jt ) := 1 − p(it , jt ), absorption is reached and the payoff

in all future stages s > t is g∗(it , jt );
(iii) with probability p(it , jt ), the situation is repeated at stage t + 1.

Recall that the asymptotic analysis for these games is due to Kohlberg [2] in the
case where I and J are finite.

As usual, denote X := �(I) and Y := �(J ); g, p and p∗ are bilinearly extended
to X × Y . Let p∗(x, y)g∗(x, y) := ∫

I×J
p∗(i, j)g∗(i, j)x(di)y(dj). g∗(x, y) is thus

the expected absorbing payoff, conditionally to absorption.
The Shapley operator of the game is then defined on R by

Φ(λ,f ) := min
y∈Y

max
x∈X

{
λg(x, y) + (1 − λ)(p(x, y)f + p∗(x, y)g∗(x, y)

}

:= max
x∈X

min
y∈Y

{
λg(x, y) + (1 − λ)(p(x, y)f + p∗(x, y)g∗(x, y)

}
.

In this framework, we can prove a stronger version of Lemma 2.3:

Lemma 3.1

(i) Let f ∈ R such that f ≥ Φ(0, f ) and y ∈ Y0(f ). Then, for any x ∈ X,

p∗(x, y) > 0 =⇒ f ≥ g∗(x, y).
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(ii) Let f ∈ R such that f ≤ Φ(0, f ) and x ∈ X0(f ). Then, for any y ∈ Y ,

p∗(x, y) > 0 =⇒ f ≤ g∗(x, y).

Proof We prove (i). Given x ∈ X and y ∈ Y0(f ),

f ≥ Φ(0, f ) ≥ p(x, y)f + p∗(x, y)g∗(x, y)

and p(x, y) = 1 − p∗(x, y), hence the result. �

Given λ ∈ ]0,1[, x ∈ X and y ∈ Y , let rλ(x, y) be the induced payoff in the dis-
counted game by the corresponding stationary strategies: rλ(x, y) := Ex,y

∑
λ(1 −

λ)t−1gt .

Lemma 3.2

rλ(x, y) ≤
{

g(x, y), if p∗(x, y) = 0,

max(g(x, y), g∗(x, y)), if p∗(x, y) > 0.

Proof

rλ(x, y) = λg(x, y) + (1 − λ)
[
p(x, y)rλ(x, y) + p∗(x, y)g∗(x, y)

];
hence

rλ(x, y) = λg(x, y) + (1 − λ)p∗(x, y)g∗(x, y)

λ + (1 − λ)p∗(x, y)
. �

The previous lemma implies the following.

Lemma 3.3 Let λ ∈ ]0,1[, xλ ∈ Xλ(vλ) and y ∈ Y ; then

vλ ≤
{

g(xλ, y), if p∗(xλ, y) = 0,

max(g(xλ, y), g∗(xλ, y)), if p∗(xλ, y) > 0.

Proof Since xλ is optimal in the discounted game, for any y ∈ Y ,

vλ ≤ rλ(xλ, y)

and the assertion follows from Lemma 3.2. �

Combining the preceding lemmas yields the following.

Proposition 3.1 Assume that vλn → v and xλn → x with xλn ∈ Xλn(vλn). Let v′ such
that v′ ≥ Φ(0, v′) and y ∈ Y0(v

′); then

v ≤ max
(
g(x, y), v′).



J Optim Theory Appl

Proof For any n and any y ∈ Y , Lemma 3.3 implies that either vλn ≤ g(xλn, y) or
that p∗(xλn, y) > 0, and vλn ≤ max(g(xλn, y), g∗(xλn, y)). In the second case, since
y ∈ Y0(v

′), the first assertion in Lemma 3.1 ensures that g∗(xλn, y) ≤ v′, so in both
cases we get the inequality vλn ≤ max(g(xλn, y), v′). Passing to the limit yields the
result. �

Corollary 3.1 vλ converges as λ goes to 0.

Proof Suppose, on the contrary, that there are two sequences vλn → v and vλ′
n
→ v′

with v > v′. Up to an extraction, one can assume that xλn ∈ Xλn(vλn) converges to x

and, similarly, yλ′
n
∈ Yλ′

n
(vλ′

n
) converges to y. By Lemma 2.2, v′ = Φ(0, v′) and y ∈

Y0(v
′), so applying Proposition 3.1 we get v ≤ max(g(x, y), v′), hence v ≤ g(x, y).

A dual reasoning yields v′ ≥ g(x, y), a contradiction. �

We now identify the limit v of the absorbing game.

Definition 3.1 Define the function W : X × Y → R by

W(x,y) := med
(
g(x, y), sup

x′;p∗(x′,y)>0
g∗(x′, y

)
, inf
y′;p∗(x,y′)>0

g∗(x, y′)),

where med(·, ·, ·) denotes the median of three numbers, with the usual convention
that a supremum (resp., an infimum) over an empty set equals −∞ (resp., +∞).

Corollary 3.2 The limit v is the value of the zero-sum game, denoted by Υ , with
action spaces X and Y and payoff W .

Proof It is enough to show that v ≤ w := supx infy W(x, y) as a dual argument yields
the conclusion. Assume, by contradiction, that w < v.

Let ε > 0 with w + 2ε < v. Consider x ∈ X0(v) an accumulation point of xλ ∈
Xλ(vλ) and let y be an ε-best response to x in the game Υ . Lemma 3.1(ii) implies
that

inf
y′;p∗(x,y′)>0

g∗(x, y′) ≥ v > w + ε ≥ W(x,y),

so that

W(x,y) = max
(
g(x, y), sup

x′;p∗(x′,y)>0
g∗(x′, y

))
.

Thus, supx′;p∗(x′,y)>0 g∗(x′, y) ≤ w + ε < v − ε and, similarly, g(x, y) < v − ε. The
corresponding inequalities hold with xλ, for λ small enough:

p∗(xλ, y)
[
g∗(xλ, y) − (v − ε)

] ≤ 0, g(xλ, y) ≤ v − ε,

leading by Lemma 3.2 to vλ ≤ v − ε, a contradiction. �

Remark 3.1 The proof of Corollary 3.2 establishes in itself the existence of the limit
v (by doing the same reasoning with any accumulation point of vλ).
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Furthermore, notice that this proves that the game Υ has a value, which is not
obvious a priori.

4 Recursive Games

Recursive games are another special class of stochastic games, as defined in Sect. 2.
We are given a finite set Ω = Ω0 ∪ Ω∗, two compact metric sets I and J , a payoff
function g∗ from Ω∗ to R, and a separately continuous function ρ from I × J × Ω0
to �(Ω). Ω∗ is the set of absorbing states, while Ω0 is the set of recursive states.

The repeated recursive game is played in discrete time as follows. At stage t =
1,2, . . ., if absorption has not yet occurred and the current state is ωt ∈ Ω0, player 1
chooses it ∈ I and, simultaneously, player 2 chooses jt ∈ J :

(i) the payoff at stage t is 0;
(ii) the state ωt+1 is chosen with probability distribution ρ(ωt+1|it , jt ,ωt );

(iii) if ωt+1 ∈ Ω∗, absorption is reached and the payoff in all future stages s > t is
g∗(ωt+1);

(iv) if ωt+1 ∈ Ω0, absorption is not reached and the game continues.

The study of those recursive games was first done by Everett [5], who proved that
the game has a value when considering the asymptotic payoff on plays.

As before, denote X := �(I) and Y := �(J ), X := XΩ and, similarly, Y = YΩ ;
ρ is bilinearly extended to X×Y. Recall that in this framework, the Shapley operator
is defined from F1 := R

Ω0 to itself by

Φ(λ,f )(ω) := min
y∈Y

max
x∈X

{

(1 − λ)
∑

ω′∈Ω

ρ(ω′|x, y,ω)f
(
ω′)

}

:= max
x∈X

min
y∈Y

{

(1 − λ)
∑

ω′∈Ω

ρ(ω′|x, y,ω)f
(
ω′)

}

,

where, by convention, f (ω′) = g∗(ω′) whenever ω′ ∈ Ω∗.

Proposition 4.1 Let v ∈ S0, and v′ such that maxΩ v(ω) − v′(ω) > 0. Assume that
the inequality v′(ω) ≥ Φ(0, v′)(ω) holds for all ω ∈ Ω1 := ArgmaxΩ(v − v′). Then
v(·) ≤ 0 on Ω1.

Proof Denote by Ω2 the Argmax of v on the set Ω1; it is enough to prove that
v(·) ≤ 0 on Ω2, so we assume the contrary. Up to extraction, vλn → v, xλn ∈
Xλn(vλn) → x and there exists ω0 ∈ Ω2, which realizes the maximum of vλn on Ω2
for every n. In particular, v(ω0) > 0. Since xλn is optimal, we get, for any y ∈ Y:

vλn(ω0) ≤ (1 − λn)

[ ∑

ω′∈Ω2

ρ(ω′|xλn,y,ω0)vλn

(
ω′)

+
∑

ω′∈Ω\Ω2

ρ(ω′|xλn,y,ω0)vλn

(
ω′)

]

,



J Optim Theory Appl

so, by definition of ω0,
(
1 − (1 − λn)ρ(Ω2|xλn,y,ω0)

)
vλn(ω0) ≤ (1 − λn)

∑

ω′∈Ω\Ω2

ρ(ω′|xλn,y,ω0)vλn

(
ω′).

For simplicity, denote ρn := ρ(Ω2|xλn,y,ω0). If ρn = 1 for infinitely many n, we
immediately get v(ω0) ≤ 0 and the requested contradiction, hence we assume that it

is not the case. Hence, up to an extraction, μn defined by μn(w
′) = ρ(ω′|xλn ,y,ω0)

1−ρn
is

a probability measure on Ω\Ω2. Then, for n large enough, we get an analogue of
Lemma 3.3:

vλn(ω0) ≤ 1 − λn

1 − (1 − λn)ρn

∑

ω′∈Ω\Ω2

ρ(ω′|xλn,y,ω0)vλn

(
ω′) (1)

= (1 − λn)(1 − ρn)

λn + (1 − λn)(1 − ρn)

∑

ω′∈Ω\Ω2

ρ(ω′|xλn,y,ω0)

1 − ρn

vλn

(
ω′) (2)

≤ max

(

0,
∑

ω′∈Ω\Ω2

μn

(
ω′)vλn

(
ω′)

)

. (3)

On the other hand, choose now y ∈ Y0(v
′). Since ω0 ∈ Ω2,

v′(ω0) ≥ Φ
(
0, v′)(ω0)

≥
[ ∑

ω′∈Ω2

ρ(ω′|xλn,y,ω0)v
′(ω′) +

∑

ω′∈Ω\Ω2

ρ(ω′|xλn,y,ω0)v
′(ω′)

]

,

so using the fact that v′ is constant on Ω2, we get an analogue to Lemma 3.1:

v′(ω0) ≥
∑

ω′∈Ω\Ω2

μn

(
ω′)v′(ω′). (4)

Letting n go to infinity in inequalities (3) and (4), and using v(ω0) > 0, we obtain
by compactness the existence of μ ∈ �(Ω\Ω2) such that

v(ω0) ≤
∑

ω′∈Ω\Ω2

μ
(
ω′)v

(
ω′), (5)

v′(ω0) ≥
∑

ω′∈Ω\Ω2

μ
(
ω′)v′(ω′). (6)

Subtracting (6) from (5) yields
(
v − v′)(ω0) ≤

∑

ω′∈Ω\Ω2

μ
(
ω′)(v − v′)(ω′),

and since ω0 ∈ Ω1 = ArgmaxΩ(v − v′), this implies that the support of μ is included
in Ω1 and that (5) is an equality. This, in turn, forces the support of μ to be included
in Ω2 = ArgmaxΩ1

v, a contradiction to the construction of μ. �
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Corollary 4.1 vλ converges as λ goes to 0.

Proof Assume that there are two accumulation points v and v′ with
maxΩ{v − v′} > 0, and denote Ω1 = ArgmaxΩ(v − v′). Then Proposition 4.1 im-
plies that v(·) ≤ 0 on Ω1. A dual argument yields v′(·) ≥ 0 on Ω1, a contradiction. �

We now recover a characterization of the limit due to Everett [5]:

Corollary 4.2 S0 ⊂ L + ∩ L −, where A is the closure of A and

L + :=
⎧
⎨

⎩
f ∈ R

Ω,

Φ(0, f )(ω) ≤ f (ω) ∀ω ∈ Ω0
Φ(0, f )(ω) = f (ω) =⇒ f (ω) ≥ 0
f (ω) ≥ g∗(ω) ∀ω ∈ Ω∗

⎫
⎬

⎭
, (7)

and symmetrically

L − :=
⎧
⎨

⎩
f ∈ R

Ω,

Φ(0, f )(ω) ≥ f (ω) ∀ω ∈ Ω0
Φ(0, f )(ω) = f (ω) =⇒ f (ω) ≤ 0
f (ω) ≤ g∗(ω) ∀ω ∈ Ω∗

⎫
⎬

⎭
. (8)

We will need the following lemma.

Lemma 4.1 For any ε ≥ 0, there exist Ω ′ ⊂ Ω0 and v′ ∈ F1 such that the couple
(Ω ′, v′) satisfies

(a) v′(ω) = g∗(ω) for all ω ∈ Ω∗.
(b) v′(ω) = v(ω) − ε on Ω ′.
(c) v(ω) ≥ v′(ω) > v(ω) − ε on Ω0\Ω ′.
(d) For any ω ∈ Ω0\Ω ′, Φ(0, v′)(ω) > v′(ω).
(e) For any ω ∈ Ω ′, Φ(0, v′)(ω) = v′(ω).

Proof This was proved in [10], but we recall the proof for the sake of completeness.
Let E be the set of couples (Ω ′′, v′′) such that Ω ′′ ⊂ Ω0, v′′ ∈ F1, and (Ω ′′, v′′)

satisfies properties (a) to (d). This set is nonempty since (Ω0, v −ε1ω∈Ω0) ∈ E . Since
Ω0 is finite, we can choose a couple (Ω ′, v′) in E such that there is no (Ω ′′, v′′) in E
with Ω ′′

� Ω ′. Let Ω̃ be the set on which Φ(0, v′)(ω) = v′(ω); we now prove that
Ω̃ = Ω ′, hence that (Ω ′, v′) also satisfies property (e).

By contradiction, assume that Ω̃ � Ω ′ and consider, for small α > 0, vα := v′ +
α1ω∈Ω ′\Ω̃ . The couple (Ω̃, vα) clearly satisfies properties (a) to (c) for α < ε. It also
satisfies property (d) for α small enough by continuity of Φ(0, ·). So, for α small
enough, the couple (Ω̃, vα) is in E , contradicting the minimality of Ω ′. �

We can now prove Corollary 4.2:

Proof of Corollary 4.2 Let v ∈ S0, let ε > 0 and define (v′,Ω ′) as in Lemma 4.1. By
properties (a) to (c), ‖v − v′‖∞ ≤ ε. If Ω ′ = ∅, then property (d) implies that v′ ∈
L −. If Ω ′ is nonempty, then, by properties (b), (c) and (e), Ω ′ = Argmax(v−v′) and
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Φ(0, v′)(·) = v′(·) on Ω ′. Hence, Proposition 4.1 yields v(·) ≤ 0 on Ω ′. So v′(·) ≤ 0
on Ω ′ and v′ ∈ L − as well. This implies that v ∈ L −. By duality, v ∈ L +. �

Remark 4.1 This corollary implies in itself that vλ converges, as there is at most one
element in the intersection, see [3] and Proposition 9 in [6].

5 Games with Incomplete Information

We consider here two person zero-sum games with incomplete information (inde-
pendent case and standard signaling). π is a product probability p ⊗ q on a finite
product space K × L, with p ∈ P = �(K), q ∈ Q = �(L). g is a payoff function
from I × J × K × L to R where I and J are finite action sets. Given the parame-
ter (k, ) selected according to π , each player knows one component (k for player
1,  for player 2) and holds a prior on the other component. From stage 1 on, the
parameter is fixed, the repeated game with payoff g(·, ·, k, ) is played. The moves
of the players at stage t are {it , jt }, the payoff is gt = g(it , jt , k, ) and the infor-
mation of the players after stage t is {it , jt }. X = �(I)K and Y = �(J )L are the
type-dependent mixed action sets of the players; g is extended on X ×Y ×K ×L by
g(x, y,p, q) = ∑

k, pkqg(xk, y, k, ).
Given (x, y,p, q), let x(i) = ∑

kx
k
i pk be the probability of action i and p(i) be

the conditional probability on K given the action i, explicitly pk(i) = pkxk
i

x(i)
(and,

similarly, for y and q).
While this framework is not a particular case of Sect. 2, since the set P × Q that

will play the role of the state space is not finite, it is still possible to introduce a
Shapley operator for this game. This operator is defined on the set F2 of continuous
concave-convex functions on P × Q by

Φ(λ,f )(p, q) := min
y∈Y

max
x∈X

{

λg(p,q, x, y) + (1 − λ)
∑

i,j

x(i)y(j)f
(
p(i), q(j)

)
}

(9)

:= max
x∈X

min
y∈Y

{

λg(p,q, x, y) + (1 − λ)
∑

i,j

x(i)y(j)f
(
p(i), q(j)

)
}

(10)

and the value vλ of the λ-discounted game is the unique fixed point of Φ(λ, .) on F2.
These relations are due to Aumann and Maschler (1966) [7] and Mertens and Zamir
(1971) [8].

Xλ(f )(p, q) denotes the set of optimal strategies of player 1 in Φ(λ,f )(p, q).
In this framework, any f ∈ F2 is a fixed point of the projective operator Φ(0, .),

that is, F2 = S .
Note that, if C is a bound for the payoff function g, then any vλ is bounded by C

as well, and is moreover C-Lipschitz. The family {vλ} is thus relatively compact for
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the topology of uniform convergence, hence S0, the set of accumulation points of the
family {vλ}, is nonempty.

To ease the notations, we will denote the sum
∑

i,j x(i)y(j)f (p(i), q(j)) by
Eρ(x,p)×ρ′(y,q)f (p̃, q̃). Note that p̃ only depends on x and p, and that q̃ only de-
pends on y and q .

For any f ∈ F2, Jensen’s inequality ensures that Eρ(x,p)f (p̃, q) ≤ f (p,q). The
strategies of player 1 for which the equality holds for all f ∈ F2 are called non-
revealing. Their set is denoted NR(p) := {x ∈ X; p̃ = p,ρ(x,p) a.s.}. The set
NR(q) of non-revealing strategies of player 2 is defined similarly.

Finally, the non-revealing value u is

u(p,q) := min
y∈NR(q)

max
x∈NR(p)

g(x, y,p, q) = max
x∈NR(p)

min
y∈NR(q)

g(x, y,p, q).

The existence of limvλ was first proved in [7] for games with incomplete information
on one side. It was then generalized in [8] for games with incomplete information on
both sides, with a characterization of the limit v being the only solution of the system

v = Cavp min(u, v), v = Vexq max(u, v),

where Cav(f ) (resp. Vex(f )) denotes the smallest concave function in the first vari-
able which is larger than f (resp., the largest convex function in the second variable
which is smaller than f ).

A shorter proof of this result (including characterization) was established in [9].
The tools used in the following proof are quite similar to the one used in [9], but the
structure differs.

Lemmas 2.1 and 2.2 still hold in this framework; we now prove a more precise
version of Lemma 2.3 using the geometry of P ×Q. Let C (P ×Q) be the set of real
continuous functions on P × Q.

Lemma 5.1 Let v ∈ S and let f ∈ C (P × Q) be concave with respect to the first
variable. If (p, q) is an extreme point of Argmax(v−f ), then X0(v)(p, q) ⊂ NR(p).

Proof Let x ∈ X0(v)(p, q) and y ∈ NR(q); then

v(p,q) ≤ Eρ(x,p)×ρ′(y,q)v(p̃, q̃) = Eρ(x,p)v(p̃, q),

while, by Jensen’s inequality,

f (p,q) ≥ Eρ(x,p)f (p̃, q);
so

Eρ(x,p)(v − f )(p̃, q) ≥ (v − f )(p, q).

Since (p, q) ∈ Argmax(v − f ),

Eρ(x,p)(v − f )(p̃, q) = (v − f )(p, q),
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and (p̃, q) ∈ Argmax(v − f ),ρ(x,p) a.s. Since (p, q) is an extreme point of
Argmax(v − f ), it follows that p̃ = p,ρ(x,p) a.s. and x ∈ NR(p). �

Remark that v ∈ F2 implies that NR(p) ⊂ X0(v)(p, q) since v is a saddle func-
tion; hence, in fact, NR(p) = X0(v)(p, q) in the previous lemma.

Note the analogy between Lemma 5.1 and Lemma 3.1. Lemma 3.3 also has an
analogue in this setup:

Lemma 5.2 Let xλ ∈ Xλ(vλ)(p, q) and y ∈ NR(q), then

vλ(p, q) ≤ g(xλ, y,p, q).

Proof By definition of vλ and xλ,

vλ(p, q) ≤ λg(xλ, y,p, q) + (1 − λ)Eρ(xλ,p)×ρ′(y,q)vλ(p̃, q̃)

≤ λg(xλ, y,p, q) + (1 − λ)vλ(p, q),

using Jensen’s inequality and the fact that y ∈ NR(q). Hence vλ(p, q) ≤
g(xλ, y,p, q). �

Recall that S0 ⊂ S is the set of accumulation points of {vλ} for the uniform norm.

Proposition 5.1 Let v ∈ S0.

(i) Let f ∈ C (P × Q) be concave with respect to the first variable. Then, at any
extreme point (p, q) of Argmax(v − f ),

v(p,q) ≤ u(p,q).

(ii) Let f ′ ∈ C (P × Q) be convex with respect to the second variable. Then, at any
extreme point (p, q) of Argmin(v − f ′),

v(p,q) ≥ u(p,q).

Proof We prove (i). Apply Lemma 5.2 to any sequence {vλn} converging to v. By
Lemma 5.2, there exists x ∈ X0(v)(p, q) such that

v(p,q) ≤ inf
y∈NR(q)

g(x, y,p, q).

Lemma 5.1 implies that x ∈ NR(p) (since v ∈ S ), and the result follows by definition
of u.

(ii) is established in a dual way. �

Proposition 5.1 implies the following corollaries of existence and characterization
of limvλ:

Corollary 5.1 vλ converges uniformly as λ tend to 0.
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Proof Let v and v′ in S0 and let (p, q) be any extreme point of Argmax(v − v′).
Since v′ is concave in its first variable, Proposition 5.1(i) with f = v′ implies that
v(p,q) ≤ u(p,q). Apply now Proposition 5.1(ii) to f ′ = v to get v′(p, q) ≥ u(p,q).
This yields v(p,q) ≤ v′(p, q), hence v ≤ v′, thus uniqueness. �

Corollary 5.2 Any accumulation point v of vλ satisfies the Mertens–Zamir system:

v = Cavp min(u, v), v = Vexq max(u, v).

Proof Let v be an accumulation point of the family {vλ}. We only prove that v ≤
Cavp min(u, v). Since v is concave in p, the other inequality is trivial, and a dual
argument gives the dual equality. Denote f = Cavp min(u, v), and let (p, q) be any
extreme point of Argmax(v − f ). Since f is concave in p, Proposition 5.1 implies
that v(p,q) ≤ u(p,q). Hence,

v(p,q) ≤ min(u, v)(p, q) ≤ f (p,q)

and thus v ≤ f . �

Remark 5.1

(i) The proof above also shows that v is the smallest among the functions satisfying
w = Cavp min(u,w).

(ii) A similar approach applies word for word to the dependent case, as defined in
Mertens and Zamir [8].

(iii) The case where the action sets I and J are compact metric can also be handled in
the same way, using the martingales (p̃, q̃) of regular conditional probabilities.

6 Conclusion

This paper proposes a unified proof of existence of the limit of the discounted value
for three families of zero-sum repeated games. The proofs are based on the Shapley
operator and the associated fixed point.

Recall that a similar formula holds for the discounted value of general zero-sum
repeated games ([11], Chap. 4). Hence we expect to extend the current approach to
further classes of games.

It could also be used for other evaluations of the payoff beyond the discounted
case, for example, to prove the convergence of the value of the n-stage game when n

tends to infinity.
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